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We introduce a class of bounded linear operators on normed spaces satisfying a
Bohman-Korovkin—Wulbert type approximation theorem and investigate a class of
such operators on special function spaces. € 1993 Academic Press, Inc.

1. INTRODUCTION

Recently a class of operators on C[0,1] satisfying a Bohman-
Korovkin-Wulbert type theorem was introduced and investigated by the
author (cf. [8,9]). The purpose of this paper is to introduce and to
investigate a class of such operators on normed spaces.

In 1952, H. Bohman [2] showed that a sequence of special interpolation
operators {B,:n=1,2,..} on C[O0, 1] converges strongly to the identity
operator on C[0,1] if {B,(x™):n=1,2,..} converges uniformly to the
function x” for each m=0, 1, 2. Such functions x™: t—¢" (te [0, 1]) are
called test functions. In 1959, P. P. Korovkin [4] showed that Bohman’s
theorem is true even if the interpolation operators B, are replaced with
positive linear operators on C[0, 1]. In 1968, D. E. Wulbert {107 showed
that Korovkin’s theorem is true even if the positivity condition on the
operators is replaced with the operator norm condition on which the
sequence of operator norms converges to one.

Let X and Y be normed spaces and B(X, Y) the Banach space of all
bounded linear operators of X into Y. For Sc X, Bc< B(X, Y), and xe X,
let BKW(X,Y; S,B,x) be the set of all TeB(X,Y) such that if
{T,:Ae A} is a net in B such that lim |7, || =|| 7| and lim || T;s— Ts|| =0
(Vse S), then lim || T,x — Tx)| =0. We further set

BKW(X, ¥; S, B)= ) BKW(X, Y; S, B, x).
xeX
We call an element of BKW(X, ¥;S,B) a Bohman-Korovkin-
Wulbert operator (shortly BKW-operator) of X into Y for the test set S
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and B. Also set BKW(X; S, B)=BKW(JX, X; 5, 8), BKW(X, Y;S)=
BKW(X, Y; S, B(X, Y)), and BKW(X, S) = BKW(X, X, S, B(X, X)). In
this setting, Bohman’s theorem (Korovkin’s theorem and Wulbert’s
theorem) asserts that the identity operator on C[0, 1] is a BK W-operator
of C[0, 1] into itself for the test functions {1, x, x*} and the family of
special interpolation operators on C[0, 1] (the family of positive linear
operators on C[0,1] and the family of bounded linear operators on
C[0, 1], respectively).
Let us pick up the known results concerning BK W-operators.

(1) Let C(£2) be the Banach space of continuous complex-valued
functions on a compact Hausdorff space £, X a linear subspace of C(22),
and S < X a function space on 2 whose Choquet boundary equals 2. Then
Waulbert showed that the inclusion map of X into C(£2) belongs to
BKW(X, C(£2); S) (cf. [10, Corollary 2]). In particular if I" is the unit
circle and X is a linear subspace of C(I') which contains {1, z,z~}, then
the inclusion map of X into C(I") belongs to BKW(X, C(I); {1,z,z7})
(cf. [10, Corollary 41).

(2) Let A be a C*-algebra and P~ (A) the pure state space of 4. Let
S be a subset of 4 such that every fe P (A) is the only positive linear
functional on A which extends /| S. Then the author proved that if 4 is
unital and 1€ S, then the identity operator on 4 is BKW for S and the
family of positive linear operators on A (cf. [7, Theorem 3.4]). Further-
more, F. Altomare showed that if B is another C*-algebra, then every
(P~ (A), P~ (B))-admissible operator of 4 into B is BKW for S and the
family of positive linear operators of 4 into B (cf. [ 1, Theorem 5.1]).

(3) If T is a homomorphism of C[0, 1] into itself and S is an
isometric multiplication operator on C[0, 1], then TS and ST belong to
BKW(C[0, 1]; {1, x, x?}) (cf. (8, Theorem]).

(4) The sum of two homomorphisms of C[0, 1] into itself belongs to
BKW(C[0, 1]; {1, x, x% x*, x*}) (cf. [9, Theorem]).

But, very recently, S. Romanelli [6] characterized the T-universal
Korovkin spaces in the context of commutative Banach algebras and
observed that (4) is contained in her approximation theory.

In this paper we will give some new BKW-operators on function spaces.

2. THEOREMS

Let D~ be the closed unit disk. A(D ") the disk algebra, and C(I") the
Banach space of continuous complex-valued functions on I, the unit circle.
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THEOREM 1. Let By, .., B, be finite Blaschke products and Tg,, .., Ty,
the homomorphisms of A(D ) into itself defined by B,, ..., B, respectively.
Let a,,..a, be positive real numbers. Then a Ty + --- +a,Ty €
BKW(A(D™); {1,z .., 2"}).

Remark. Let T be a nonzero homomorphism of 4(D ™) into itself. Set
¢=T(z). Then pe A(D ) and (Tf)z)=f($(z)) (VzeD ', Vfe A(D "))
If ¢(I')< I, then ¢ must be a finite Blaschke product.

TueOREM 2. Let T, .., T, be nonzero homomorphisms of C(I') into
itself and a,,.., a, positive real numbers. Then a,T,+ --- +a,T,€
BKW(C({I'); {1,z ..,2"})

Given a topological space Q, we denote by C*(£2) the Banach space of
all bounded continuous complex-valued functions on € with supremum
norm and usual operations.

THEOREM 3. Let Q, @ be two topological spaces, X a linear subspace of
C?(Q) such that sup{ |x(w)| : xe X, |x|[=1}=1 for any o €, Y a linear
subspace of C*(®). Let S be a subset of X such that

Q={weR:feX* (the dual space of X), | f|| €1,
s(w)=1(s) (VseS)=x(w)=f(x) (VxeX)}

and ¥ a compact subset of @ such that ||y| =sup{|v(#):de ¥} for each
yeY (ie, ¥ is a boundary of Y). Then a norm one linear operator T of X
into Y which satisfies the condition

¥ -Q, Ju ¥ I (Tx) @) =u(d) x(1(d)) (Ve ¥, VxeX)

belongs to BKW(X, Y; S).

Remark. Both (1) and (3) in Section | are special cases of the above
theorem. Also the condition in the above theorem concerns the decomposi-
tion theorem of W. Holsztynski [3].

THEOREM 4. Let T, and T, be nonzero homomorphisms of C[0,1]
into itself and let a(t) and P(t) be representing functions of T, and T,,
respectively, ie. o(t)=(T,x)}1), PY=(T,x)(t) (Vte{0,1]), where
x(t)y=t (Vte[0,1]). Let G={(x(s),B(1))e[0,1]*1e[0,1]} and
D={(t,5)e[0,1]% s>31,3s21+2} 0 {(1,5)e[0, 1] 1>3s, 3t—22>5}.
If GeD and if a and b are positive numbers, then aT,—bT,€
BKW(C[O0, 1]; {1, x, x%, x*}).
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3. Basic LEmMma

Let X be a normed space and X its dual space. For S< X and x€e X,
let U(X, S; x) be the set of all fe X* such that if g is an element of X*
satisfying (gl < |l f]l and g | S= /] S, then g(x) = f(x). We further set

U(x, S)= [} UX, S; x).

xeX

The following lemma is the main tool in our approximation theory.

LEMMA. Let X, Y be normed spaces, xe X, and S < X. Let E be a weak*-
closed subset of Y* such that ||gl| =1 for all ge E. Let T be an operator in
B(X, Y) such that |T||=|T*g| and T*ge U(X, S; x) for all ge E, where
T* is the dual map of T. If {T,} is a net in B(X,Y) such that
Lim |T,| =T\ and lim,sup,..|g(T;s)—g(Ts)|=0 for all seS, then
lim SUDge g lg(T;x)—g(Tx)| =0.

This can be directly proved by a similar method to that used in the proof

of [5, 8] However, we show this as an application of the following result
of Altomare which is the main tool of his approximation theory in [17].

THEOREM A [1, Corollary 1.2]. Let X be a topological linear space and
X* its topological dual with weak*-topology. Let A be an equicontinuous
subset of X*, B a weak*-closed subset of X*, and S a subset of X. Let
W, (X, S, A, B) be the linear subspace of all x € X which verifies the following
property:

if 'Y is a linear topological space, C an equicontinuous
weak*-closed subset of Y*, D a weak*-closed subset of Y* with
Cc D, {T;} an equicontinuous net of (B, D)-admissible linear
maps from X 1o Y, and T: X - Y an (A, C)-admissible linear
map such that lim;sup, . |g(T;5)—g(Ts)| =0 (VseS), then
lim, sup, . ¢ |g(T;x) — g(Tx)| =0.

Then W, (X, S, A, B) equals the set of all xe X such that if fe A and ge B
and if f(s)=g(s) for all s€ S, then f(x)=g(x).

Proof of the Lemma. Let {T,} be a net of B(X,Y) such that
lim |T; =)IT| and lim, sup,. . |8(T;5)—g(Ts)| =0 for all seS. In this
case we can assume without loss of generality that |T,|| =7 =1 for all
A. Now set

A={feUX, S;x)fll=1},
B={feX* |fl<t},
C=E,

D={geY* |gll<1}.

640,72/2-4
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Then {T,} is an equicontinuous net of (B, D)-admissible linear maps
from X to Y. If also feA4 and ge B and if f(s)=g(s) for all seS,
then ligll <1=|fll and hence f(x)=g(x). Therefore by Theorem A,
xe WX, S, A, B) and hence if Te B(X, Y) is such that |T|| = || T*g| and
T*g eU(X, S;x) for all geE, then T is (A, C)-admissible and so
lim; sup, . 1g(T,x)—g(Tx)|=0. 1|

Remark. U(X, S; x)cBKW(X, C; S, x)cU'(X, S; x):={feX*: ge X*,
igh=1f1I, gl S=/f]S=>g(x)=f(x)}. Here C is the complex numbers.

4. Proors oF THEOREMS

(1) Proof of Theorem 1. We will identify D~ and I' with the carrier
space of 4(D~) and the Silov boundary of D~ with respect to 4(D~),
respectively. Now let B, ..., B, be finite Blaschke products and Ty, .., T,
the homomorphisms of 4(D ™) into itself defined by B, ..., B,, respectively.
Also let a,, .., a, be positive real numbers and set T=a,T5 + - +a,Tp .
We further set S= {1, z, .., z"} and E=TI. Hence, if we can show that

(i) Tl ={T*zl and
(i) T*zoe UA(D),S)

for all z, € E, then we obtain that Te BKW(A(D ); S) by the basic lemma.
Thus we only need to show (i) and (ii). Let zo€ E be fixed. Note that
T*zy=a,B,(zy)+ -~ +a,B(z;) and hence |T*z,l=a,+ --- +a,.
Therefore we have

2 g Ty,
j=1

so that (i) was shown. Next to show (ii), let ve(A(D ))* be such that
T*z,| S=v|S and ||v| <||T*z,]l. So we want to show that v=T*z,.
Since we can regard A(D ) as a closed subspace of C(I"), we can take a
linear functional x on C(I”) such that || = lv| and u| A(D~)=v by the
Hahn-Banach extension theorem. Set

zy = Bi(z4), 1y 20 = Bo(2g).

<Y, a;=T*z,) <IT*| =TI,

j=1

1Tl =

Then z, ..,z,eland a,6. + --- +a,d,, is a norm preserving linear exten-
sion of T*z, to C(I"). Here §. denotes the evaluation at ze /. Hence we
have that y|S=a,6,,+ --- +a,6,, | S. Put

z, =exp(i8,), ..., z,, = exp(if,,),
where i= \/—‘1 Then we obtain that
p(z*)="3, a;exp(ike)) (k=0,1,..,n).

j=1
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In particular,
lul = vl <1 T*z0ll =a, + -+ +a,=p(1) < |lul,

and hence u can be regarded as a positive measure on /. Now let 7 be the
isomorphism of C(I") onto C,,(R) defined by

. f(z2) - flexp(iB))  (z=-exp(if)),

where C,,(R) is the Banach space of continuous compiex-valued functions
on the real numbers R with period 2n. Set p~ = (t*) ! (u), where t* is the
dual map of 7. Then u ™~ is a positive linear functional on C,,(R). Also since
p~ (exp(ik8)) = u(z¥) (k=0,1, 2, ...), it follows that

p~(coskB)=Y a;cos kb,
j=1
and

p~(sink@) =3 a;sin kb,

j=1

for all k=0, 1, ..., n. Put
-6

i

F((9)=I"]sin2 5

j=1

Then F belongs to the linear subspace of C,,(R) generated by {1, cos 8,
sin 6, ..., cos nf, sin nf} and so it can be written as

F(8)= Y b, cos kb + ¢, sin k6.

k=0

Therefore we have

b p~(cos kB)+ ¢, p~ (sin k0)

=
i
3
I¥
[ResE

x
(=

It
NI

{bk Y ajcoskb;+c, Y,

Jj=1 j=1

ajsinkBj}

x~
]
=)

1l

aj{ Y. (bycos kb, + ¢, sin kB,)}
1 k=0

-

I 1 PMs

—_

a;F(0))

~

I
[
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Therefore the support of u~ is contained in {6, .., 6,} (mod 2r) and so
we can write

n

'u~ = Z O!jé(,/.

i=1
Hence,

Y azk =Y a;exp(ikf)) = pu(z*) = pu~ (exp(ikf))
j=1

Jj=1

=Y a,exp(ikf,)= 3 az¥

J=1 Jj=1

for all k=0,1, .., n, so we have
u(f)=73, o, flexp(if;)) = _Z a,f(z)=Y a,f(z)

/=

=S a,5,(f)

ji=1

for all fe C(I"). Consequently we have that

v=p|AD )=y a_ | A(D")=T*z

J=1
and so (i1) is shown. |

(2} Proof of Theorem 2. This can be easily shown by a similar method
to that used in the above proof. |

(3) Proof of Theorem 3. Set E={d,|Y:¢e ¥}, where 6, is the evalua-
tion at ¢. Then by the compactness of ¥, E is a weak*-compact subset of
Y*. Also since

T, 1 YYD = uld) x(1(¢)) = {x, u(¢)dp) | X))

for all ¢ € ¥ and for all xe X, we have
T*(5¢ [ Y)=u(g) 5:(45; | X

for all ¢ € ¥. Therefore |T*(6,] Y)| =1 for all ¢ € ¥. Since T is norm one,
we obtain that ||[T*g|= (7| for all ge E. Suppose next that pe X'*,
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el <1, ¢ge¥, and (5, T*(0,]| Y)>=uls) (VseS§). Set w=1(¢) and
f=u(¢)" ' u. Then ||f] < 1. Also since

stw)=u(@) " (Ts)(@)=ul(¢)™" (5, T*(d41Y)>
=u(¢)” " u(s)=f(s5)
for all se S, we obtain by the assumption on S that x(w)=f(x) for all
x€ X, namely, u=T*(,| Y). In other words, T*(g)e U(X, S) for all

ge E. Therefore since ¥ is a boundary of ¥, Te BKW(X, ¥; S) follows
from the basic lemma. |}

Proof of Theorem4. Suppose that G< D and let a and b be positive
numbers. Set T=aT,—bT,. We further set S={1,x x? x*} and
E=1{6,:1e[0,1]}. Hence, if we can show that

(i) IT)=)T*g) and
(i) T*geU(C[O0,1],S)

for all g € E, then we obtain that Te BKW(C[0, 1]; S) by the basic lemma.
Thus we only need to show (i) and (ii). Let re [0, 1] be fixed and set
a=o(r), B=p(t). Then =« fe[0,1] and T*§,=ad,—bd;, so that
[[T*5,]| =a+ b. Therefore

ITI<alT,+b(T,|=a+b=|T*,|<|Tl,

so (i) is shown. To show (ii) let ue C[0, 1] be such that ||y} <a+b and
u|S=T7*5,1S (and hence u(x")=aa™—bp"™ (m=0,1,2,3)). Then we
must show that u= T*5,. We may identify C[0,1]" with the measure
space M[0, 1] of bounded regular Borel measures on [0, 1].

Suppose first that u is a real measure and let y=pu* —p~ be the Hahn
decomposition of y. Then ||p* ||+ lg" | <a+band (u*| =l | =pl)=
a—b, so that ju*{| <a and |ju~ | <b. We can assume without loss of
generality that o < f. Then («, B) € {(2,5)€[0,1]% s>3¢,3s>1+2} by the
assumption G c D. Set

Lo g2t
f(u)—3(u B°) 3
Then fe{S), the linear hull of S, f(f)=0, and 0<f(u)<f(a)
(Vue [0, 17]). Therefore

O<pu (N=n"N)—uN)=u"(f)—af(a)
< Jut ) flo) - af(2) <0,

so ¢~ (f)=0 and hence the support of s~ is contained in {0, 8}. Then we
can write u~ =b,d5+ b,0, for some b, b, 20, so that

lu=ll=by+bs. H

W=y +apu—p)  (Vuel0,1]).
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Assume that o #0. Set g(u)=f(a)—f(u) (Vue[0,1]). Then ge {(S),
g(x)=0, and 0 < g(u)<g(PB) (Vue [0, 1]). Note also that

u(g)=(ad,—bdy)(g)= —bg(p)

and

wg)=p*(g)—u"(g)=n*(g)—b,g(B)—b,2(0).

Therefore

0<u*(g)=b,g(B)+b,g(0)—-bg(p)
<(b;—b)g(B)+b,8(B)
S(lle~ N —b)g(B)

<0

so #*(g) =0 and hence the support of u* is contained in {a, 1}. Then we
can write p* =a,8, + a,8, for some a,, a, =0, so that

lu*ll=a +a,. (2)
Also since u=a,0,+a,8,—b,0,— b,8,, we have
aa, +a,— b, =ax— b (=pu(x)) (3)
and
a’a, +a, — b, = ax® — bf? (= pu(x?)). (4)
Then by (2), (3), and (4), we have

_ap(B—a)(llu" i —a)
B e T R

so a, =0 and hence a, = ||u*||=a. By (3), b,=band so b,=|lu" || —b<0
by (1), hence b,=0. We thus obtain that u=ad,—bd;=T*34,. Assume
that «=0. Then f is the only zero point of f; so by the above argument,
u~ ={u" )| 85. Also by the above argument, we can write 4 =c¢, ¢+ ¢, 0,
for some c¢;,c;20. Then u=cdy+c,6,—|u | &5, so that —bf=
c;— e~ | B (=pu(x)). Then ¢, =(llu || =) <0, s0 c;=0and b= |u"|.
Then u=c,;8,— bdg, s0 a—b=p(l)=c,—b, hence a=—c,. We thus obtain
that p=ad,— bz =T"*J,.

Suppose next that u is a complex measure. Let ¢, and y, be the real part
and the imaginary part of u, respectively. Then |y, | <|ull <a+b,
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w(x™)=aa™ —bf", and p,(x")=0 (m=0, 1, 2,3), so that pu, =aéd,— bd,
follows from the real case. Now let H be the set of all functions A€ C[0, 1]
such that hla)=1, h(f)=—1, and —1 <h(u)<1 (Yue [0, 1]). Then for
any he H,

a+ b2 p(h) =/ lah(x) — bh(B)* + | ua(h))?
=/ la+b1%+ |pus(h))?
Za+b,

so u,(h)=0. Let p be any polynomial with real coefficients on [0, 1] and
set

q(u) =p(u)—p(°2:‘;(m u+5”(°‘i:zp(ﬁ)

for each ue[0,1] and set r=g/|¢ll,,. Then r(a)=r(f)=0 and
—1<r(u)<1 (Vue[0,1]), so we can choose a function A€ H such that
r+heH. Then uy(r)=u,(r+h)=0 and hence u,(p)=0. In other words,
#>=0. Consequently, u=pu, =ad,—bds=T*5, and (ii) is shown. |

Remark. Let {z,,..,z,} be a finite subset of C such that z,# z, (i #/),
let X be the Banach space of complex-valued functions on {z,, .., z,}, and
set S= {1,z z*} = X. If n<3, then BKW(X, S) equals B(X), all the linear
operators on X. But the class of operators in BKW(X, S) which can be
obtained by means of the basic lemma is the only class of operators
Te B(X) such that if (r;) is the representing matrix of 7, then
(tiy - 1) € U(X, S) (i=1, .., n). Here we regard (¢,,, ..., {;,) as an element
of X'*.

ACKNOWLEDGMENT

The author thanks O. Hatori for his useful comments about the Remark on Theorem 1.

REFERENCES

1. F. ALTOMARE, On the universal convergence sets, Ann. Mar. 138 (1984), 223-243.

2. H. BoHMaN, On approximation of continuous and of analytic functions, Ark. Mar. 2
(1952), 43-56.

3. W. HovszTynski, Continuous mappings induced by isometries of spaces of continuous
function, Studia Math. 124 (1966), 133-136.

4. P. P. KorovkiIN, “Linear Operators and Approximation Theory,” Hindustan Pub., Dethi,
India, 1960.



184 SIN-EI TAKAHASI

5.

6.

10.

L. C. Krutz, Unique Hahn-Banach extension and Korovkin's theorem, Proc. Amer.
Math. Soc. 47 (1975), 413-416.

S. RomaneLLl, Universal Korovkin closures with respect to operators on commutative
Banach algebras, Math. Japon., in press.

. 8.-E. TakaHasl, Korovkin's theorems for C*-algebras, J. Approx. Theory 27 (1979),

197-202.

. S.-E. TakaHasl, Korovkin type theorem on C[0, 1], in “Approximation, Optimization

and Computing: Theory and Applications” (A. G. Law and C. L. Wang, Eds.),
pp. 189-192, Elsevier/North-Holland, Amsterdam, 1990.

. S.-E. TaKaHAsI, Bohman-Korovkin-Wulbert operators on C[0, 1] for {1, x, x2, x3, x*},

Nihonkai Math. J. 1 (1990), 155-159.
D. E. WuLserT, Convergence of operators and Korovkin’s theorem, J. Approx. Theory 1
(1968), 381-390.



